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Abstract: Sporadic colorectal cancer is characterized by a multistep progression from normal ep-
ithelium to precancerous low-risk and high-risk adenomas to invasive cancer. Yet, the underlying
molecular mechanisms of colorectal carcinogenesis are not completely understood. Within the
“Metabolomic profiles throughout the continuum of colorectal cancer” (MetaboCCC) consortium we
analyzed data generated by untargeted, mass spectrometry-based metabolomics using plasma from
88 colorectal cancer patients, 200 patients with high-risk adenomas and 200 patients with low-risk
adenomas recruited within the “Colorectal Cancer Study of Austria” (CORSA). Univariate logistic
regression models comparing colorectal cancer to adenomas resulted in 442 statistically significant
molecular features. Metabolites discriminating colorectal cancer patients from those with adeno-
mas in our dataset included acylcarnitines, caffeine, amino acids, glycerophospholipids, fatty acids,
bilirubin, bile acids and bacterial metabolites of tryptophan. The data obtained discovers metabolite
profiles reflecting metabolic differences between colorectal cancer and colorectal adenomas and
delineates a potentially underlying biological interpretation.

Keywords: colorectal cancer; adenoma; untargeted metabolomics; metabolite profiling

1. Introduction

Colorectal cancer (CRC) is an acknowledged public health problem representing the
third most common cancer-related cause of death and the fourth most commonly diagnosed
cancer in the world. In 2018, more than 1.8 million new CRC cases and over 800,000 deaths
were reported worldwide [1]. The majority of CRCs are sporadic and usually develop in
a slow progression from normal epithelium to precancerous low-risk (LR) and high-risk
(HR) adenomas to invasive cancer. This offers significant opportunities for preventive
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screening and early intervention by effective removal of precancerous adenomas to reduce
mortality [2,3].

It is widely accepted that lifestyle and environmental factors like obesity, alcohol
consumption, diet and smoking contribute to colorectal carcinogenesis. CRC incidence is
further associated with advancing age and gender, underscored by higher age-adjusted
rates in males [4]. The most significant protective factors for CRC include plant-based diets,
fiber intake and physical activity [5]. Coffee intake, which is metabolically reflected by
caffeine, theophylline, or paraxanthine, represents a widely proposed protective factor
for CRC, but current evidence remains inconclusive [6,7]. Increasing evidence attributes
CRC development to alterations in the intestinal microbiota. Microbial metabolites such
as secondary bile acids have been shown to promote carcinogenesis [8]. Cancer-specific
scavenging pathways driving unremitting cell proliferation involve nucleic acid, fatty acid
and amino acid metabolism [9].

Metabolomics, the study of changes of the metabolome composition upon a particular
stimulus or condition, is used to identify metabolites that reflect the influences from
environmental, lifestyle, and endogenous factors [8,10,11]. The metabolome, the sum of
all metabolites in a particular biological sample, is a close molecular representation of the
phenotype reflecting physiological or pathological state [12]. Untargeted metabolomics is
suitable to detect hundreds of metabolites in biological samples and to provide insights into
metabolic changes [13,14]. In contrast to targeted metabolomics, untargeted metabolomics
analyses follow a hypothesis-free approach to discover metabolites that can be mapped
to networks and pathways [13]. Liquid chromatography-mass spectrometry (LC-MS) has
become invaluable for analyzing polar and nonpolar metabolites. Increasing both selectivity
and data content, LC-MS has emerged as a leading technology for complex metabolomics
samples such as human blood [13]. Differences in metabolite profiles along colorectal
carcinogenesis have been reported using serum, plasma, tissue, or fecal samples [15–18].
These previous studies often yield inconsistent findings or small sample sizes, indicating
the necessity to extend or confirm current hypotheses.

The overall aim of this study was to perform metabolite profiling applying an untar-
geted metabolomics approach using plasma samples from 88 patients with incident CRC,
200 patients with HR adenomas and 200 patients with LR adenomas selected from the
“Colorectal Cancer Study of Austria” (CORSA) biobank.

2. Results
2.1. Study Population

Demographics and clinical characteristics of the study population are shown in Table 1.
The study cohort consisted of 68.2% men in the CRC group and 66.0% men in the HR as well
as the LR adenoma groups. CRC participants were on average slightly older (70.0 years)
compared to HR (65.4 years) or LR adenoma patients (66.0 years). The LR adenoma group
had the highest proportion of never smokers. In general, the distribution of covariates was
balanced between the three participant groups.

Table 1. Demographics and clinical characteristics of the study population (n = 488).

CRC HR a LR b

Number of Participants 88 200 200
Gender

Male n(%) 60 (68.2) 132 (66.0) 132 (66.0)
Age (years)

Median (IQR) 70.0 (60.0–76.0) 65.4 (56.4–72.6) 66.0 (55.3–72.9)
Body Mass Index (kg/m2)

Median (IQR) 26.1 (23.8–29.4) 27.3 (24.3–30.0) 27.2 (24.6–30.9)
Underweight < 18.5 n(%) 0 (0) 3 (1.5) 1 (0.5)

Normal weight 18.5–24.9 n(%) 26 (29.5) 57 (28.5) 51 (25.5)
Overweight 25–29.9 n(%) 38 (43.2) 82 (41.0) 81 (40.5)

Obese ≥ 30 n(%) 15 (17.0) 48 (24.0) 61 (30.5)
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Table 1. Demographics and clinical characteristics of the study population (n = 488).

CRC HR a LR b

Missing 9 (10.2) 10 (5.0) 6 (3.0)
Smoking status n(%)

Current 20 (22.7) 50 (25.0) 35 (17.5)
Former 30 (34.2) 55 (27.5) 60 (30.0)
Never 35 (39.7) 91 (45.5) 97 (48.5)

Missing 3 (3.4) 4 (2.0) 8 (4.0)
Site n(%) c

Colon - distal 21 (23.9) - -
Colon - proximal 33 (37.5) - -

Rectum 34 (38.6) - -
CRC stage n(%) d

I 30 (34.1) - -
II 17 (19.3) - -
III 18 (20.5) - -
IV 12 (13.6) - -

Unspecified 3 (3.4) - -
Missing 8 (9.1) - -

Histopathology of polyps n(%) e

Hyperplastic - - 11 (5.5)
Tubular < 1 cm - - 189 (94.5)
Tubular > 1 cm - 64 (32.0) -
Tubulo-villous - 128 (64.0) -

Villous - 8 (4.0) -
a HR: high-risk adenomas. b LR: low-risk adenomas (adenomas are classified according to the most severe finding). c Localization of CRC
provided from clinical records. Distal colon: sigmoid colon, descending colon, splenic flexure. Proximal colon: transverse colon, hepatic
flexure, ascending colon, cecum, appendix. Rectum: rectum, rectosigmoid junction. d UICC stage based on the TNM Classification of
Malignant Tumors. e Histopathology of polyps. HR adenomas: adenomatous tubular polyps > 1 cm, tubulo-villous polyps, and villous
polyps. LR adenomas: adenomatous tubular polyps < 1 cm or hyperplastic polyps.

2.2. Metabolic Features Derived from Untargeted Metabolomics Analysis

Alignment of two analytical batches yielded 4595 detected features, of which 983 were
carried forward after data preprocessing. The complete list of statistically significant fea-
tures associated with respective case-control status is presented in Supplementary Table S1.
The numbers of features with FDR-corrected, statistically significant p-values (herein re-
ferred to as q-value) are shown in Table 2 for the three compared groups. We detected in
total 409 significant features in the CRC versus (vs.) the HR and LR adenomas group, 367
when comparing CRC vs. HR adenomas, and 384 in the CRC vs. LR adenomas comparison
group. A sensitivity analysis excluding data from CRC stage III-IV did not reveal any
significant influence by advanced stage CRC into the main analysis (data not shown).

Table 2. Quantification of FDR-adjusted p-values of statistically significant metabolic features within
the three comparison groups.

CRC vs. HR + LR CRC vs. HR CRC vs. LR

Sum of Statistically Significant Features 409 367 384
q-value a

5.0 × 10−2–1.0 × 10−2 103 101 85

1.0 × 10−2–1.0 × 10−3 78 86 97

1.0 × 10−3–1.0 × 10−5 122 131 99

1.0 × 10−5–1.0 × 10−10 92 43 88

1.0 × 10−10–1.0 × 10−20 11 6 15

<1.0 × 10−20 3 0 0
aq-value: FDR-corrected p-value.
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2.3. Metabolic Differences in CRC Compared to Colorectal Adenomas

In total we detected 442 distinct significant metabolite features, of which 71.9% (318
features) overlap across all three case-control comparison groups (Figure 1). The list of
significant metabolic features specific for each comparison group, respectively, is given
in Supplementary Table S2. No significant difference between the HR group and LR
group could be detected via univariate logistic regression (data not shown). These results
prompted us to combine the HR and LR adenomas into one adenoma group for further
analyses. Noteworthy, subsequent presented data focuses on results generated solely from
the CRC vs. HR and LR comparison.
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Figure 1. Venn diagram showing the overlap of 442 significant features detected in the three compar-
ison groups. Nearly all metabolites were shared across the three comparison groups. A subset of
metabolites was specifically detected within the CRC vs. HR and LR adenoma group (2%), CRC vs.
HR adenomas (4.1%), and CRC vs. LR adenomas (3.4%).

Out of the statistically significant molecular features we could identify 48 metabolites
comparing CRC with HR and LR adenomas. These identified metabolites combined
according to metabolic pathways are listed in Table 3. Positive or inverse associations
with CRC are reflected by ORs above (red font) or below 1 (green font), respectively. In
concordance with the Metabolomics Standards Initiative (MSI), 24 metabolites reached
identification levels 1 and 24 resulted in level 2. Retention times and the fragmentation
(MS/MS) spectra of the identified metabolites compared to an authentic chemical standard
can be taken from Supplementary File S4.

2.4. Metabolic Enrichment and Pathway Analysis

When subjecting the 48 identified metabolites comparing CRC with HR and LR ade-
nomas to metabolite sets enrichment and pathway analysis, the major relevant pathways
were the caffeine metabolism, glycerophospholipid metabolism, taurine and hypotaurine
metabolism, and pathways involving amino acid metabolism. (Supplementary Figure S3).
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Table 3. List of the identified metabolites and respective pathways when comparing CRC against HR and LR adenomas.

Pathway and Metabolite Name RT a m/zb ID Level c q-Value d OR [CI.Low; CI.Up] e

Nicotinate and nicotinamide metabolism
1-methylnicotinamide 0.59 137.0711 1 9.46 × 10−9 0.20 [0.12; 0.34]

Carnitine pathway
Carnitine 0.59 162.1132 1 1.15 × 10−2 0.22 [0.08; 0.61]

Tetradecanoylcarnitine (C14:0) 5.99 372.3109 1 1.16 × 10−4 0.25 [0.13; 0.48]
Tetradecenoylcarnitine (C14:1) 5.83 370.2959 2 1.46 × 10−5 0.38 [0.25; 0.57]
Tetradecadiencarnitine (C14:2) 5.62 368.2799 2 5.02 × 10−5 0.39 [0.25; 0.59]

Hexanoylcarnitine (C6:0) 3.33 260.1855 2 1.86 × 10−3 0.42 [0.25; 0.68]
Hexadecenoylcarnitine (C16:1) 6.10 398.3263 2 9.27 × 10−7 0.22 [0.12; 0.39]

Hexadecadienoylcarnitine (C16:2) 5.93 396.3105 2 7.41 × 10−5 0.29 [0.16; 0.51]
Octanoylcarnitine (C8:0) 4.42 288.2177 2 9.86 × 10−4 0.46 [0.3; 0.7]

Decanoylcarnitine (C10:0) 5.13 316.2495 1 7.29 × 10−3 0.53 [0.35; 0.8]
Decenoylcarnitine (C10:1) isomer 2 4.96 314.2327 2 7.58 × 10−4 0.35 [0.2; 0.61]
Decenoylcarnitine (C10:1) isomer 1 4.87 314.2328 2 1.61 × 10−4 0.44 [0.27; 0.7]

Dodecanoylcarnitine (C12:0) 5.64 344.2804 1 9.34 × 10−5 0.37 [0.23; 0.58]
Dodecenoylcarnitine (C12:1) 5.50 342.2638 2 4.40 × 10−4 0.33 [0.19; 0.58]

Propionylcarnitine (C3:0) 1.32 218.1382 1 2.15 × 10−5 5.14 [2.56; 10.68]
Bilirubin pathway

Bilirubin 7.93 583.2554 1 2.53 × 10−4 0.46 [0.31; 0.67]
Bilirubin isomer 2 5.11 585.2696 2 4.90 × 10−7 0.33 [0.21; 0.5]
Bilirubin isomer 1 4.31 585.2685 2 8.43 × 10−3 0.46 [0.27; 0.77]

Bile acid metabolism
Taurine 0.63 126.0219 1 6.10 × 10−13 16.17 [7.81; 35.24]

Glycochenodeoxycholic acid 6.44 450.3216 1 1.37 × 10−2 1.46 [1.13; 1.9]
Caffeine pathway

Caffeine 3.19 195.0884 1 2.14 × 10−3 1.28 [1.11; 1.49]
Theobromine 2.38 181.0721 1 8.42 × 10−3 1.46 [1.14; 1.89]
Theophylline 2.81 181.0723 1 4.20 × 10−2 1.33 [1.05; 1.71]

Phenolic acid metabolism
Hippuric acid 3.07 180.0657 1 6.52 × 10−21 3.15 [2.46; 4.13]

Nucleotide metabolism
Hypoxanthine 1.16 137.0456 1 7.60 × 10−3 2.14 [1.3; 3.59]

Tryptophan pathway
Indoleacetic acid 4.13 176.0716 1 1.17 × 10−10 4.23 [2.77; 6.68]

Indole-3-propionic acid 4.56 190.0870 1 1.19 × 10−12 2.57 [1.99; 3.37]
Indolelactic acid 3.83 206.0823 1 2.70 × 10−3 3.06 [1.59; 5.98]

Indole
Isatin 3.31 148.0394 1 7.34 × 10−12 5.01 [3.2; 8.09]

Linoleic acid and glycerophospholipid metabolism
LysoPC (14:0) isomer 2 6.73 468.3076 2 3.02 × 10−2 0.55 [0.34; 0.88]

LysoPC (15:0) 6.88 482.3230 2 1.98 × 10−2 0.47 [0.27; 0.82]
LysoPC (16:0) 7.00 496.3400 2 1.07 × 10−7 0.04 [0.01; 0.12]
LysoPC (16:1) 6.82 494.3243 2 3.06 × 10−5 0.32 [0.19; 0.52]
LysoPC (17:0) 7.13 510.3539 2 2.64 × 10−3 0.4 [0.23; 0.68]
LysoPC (18:0) 7.24 524.3713 2 2.89 × 10−7 0.15 [0.07; 0.29]
LysoPC (18:1) 7.06 522.3557 2 1.62 × 10−2 0.34 [0.16; 0.73]
LysoPC (20:4) 6.90 544.3402 2 1.09 × 10−4 0.22 [0.11; 0.44]
LysoPC (22:5) 6.97 570.3538 2 1.15 × 10−2 0.35 [0.17; 0.71]
LysoPC (22:6) 6.89 568.3390 2 4.92 × 10−2 0.48 [0.25; 0.89]

LysoPC (P-16:0) 7.11 480.3475 2 6.50 × 10−5 0.23 [0.12; 0.45]
PC (36:4) 8.65 782.5728 2 5.87 × 10−3 0.3 [0.14; 0.64]
PC (38:4) 9.21 810.6029 2 1.40 × 10−3 0.16 [0.05; 0.44]

Fatty acid metabolism
Docosahexaenoic acid (DHA) 7.23 329.2475 1 7.37 × 10−3 0.45 [0.27; 0.75]

Choline metabolism
Choline 0.58 104.108 1 4.67 × 10−2 0.26 [0.09; 0.8]
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Table 3. Cont.

Pathway and Metabolite Name RT a m/zb ID Level c q-Value d OR [CI.Low; CI.Up] e

Valine, leucine and isoleucine biosynthesis
Proline 0.69 116.0712 1 5.02 × 10−3 3.87 [1.69; 9.12]
Valine 0.80 118.0866 1 2.89 × 10−2 0.21 [0.06; 0.69]

Vitamin E pathway
γ-carboxyethyl hydroxychroman 5.27 265.1430 1 3.25 × 10−2 2.49 [1.22; 5.1]

Phenylacetate metabolism
Phenylacetylglutamine 3.11 265.1190 1 3.15 × 10−24 3.51 [2.71; 4.67]

a RT: retention time in minutes. b m/z: mass-to-charge ratio. c ID level: according to the Metabolomics Standards Initiative (MSI). d q-value:
FDR-corrected p-value. e OR: Odds ratio, with a one standard deviation change in metabolite intensity representing relative changes in
CRC risk. Positive or inverse associations with CRC are characterized by an OR > 1 (red font) or <1 (green font), respectively.

3. Discussion

Untargeted metabolomics data from CORSA comprising 88 participants diagnosed
with CRC, 200 patients with HR, and 200 patients with LR adenomas were used to in-
vestigate potential metabolic profiles and pathways in relation to colorectal carcinogene-
sis. We detected in total 442 statistically significant metabolic features in this untargeted
metabolomics profiling. The large number of statistically significant features detected dur-
ing this study suggests major differences in the plasma metabolome between the patients
diagnosed with stage I-IV CRC at the time of diagnosis and colorectal adenomas. The
majority of statistically significant metabolic features were commonly shared across all
three compared groups. Furthermore, we did not reveal any significant difference in the
metabolic profiles between HR and LR adenomas. Consequently, we combined HR and LR
adenomas into one adenoma group to be compared against CRC. The applied untargeted
metabolomics approach allowed a non-hypothesis-driven analysis to identify metabolites
and pathways linked to the progression from adenomas to CRC.

Within the MetaboCCC consortium, Geijsen and Brezina et al. previously performed
an untargeted metabolomics screening on plasma samples from patients diagnosed with
CRC and controls of the CORSA and the ColoCare study [19]. ColoCare is an ongoing
multicenter prospective cohort study initiated in Heidelberg in 2010 [20]. In this preced-
ing study, multiple logistic regression models were used to test the association between
metabolic features and disease state. In total, 15 metabolites were identified to exhibit
significant differences between CRC patients and controls [19].

Geijsen and Brezina et al. reported circulating plasma levels of 1-methylnicotinamide
to be notably decreased in CRC patients compared to controls [19]. In the present study,
1-methylnicotinamide was inversely associated with CRC. 1-Methylnicotinamide can be
biosynthesized in humans through the catalytic action of the enzyme nicotinamide N-
methyltransferase. Nicotinamides serve as precursors for nicotinamide adenine dinu-
cleotide (NAD+), a key molecule involved in energy metabolism [21].

Metabolites of the carnitine cycle play a vital role in fatty acid metabolism and mito-
chondrial fatty acid transport, but can also impact the composition of gut microbiota [22].
We identified many acyl carnitines as associated with CRC, confirming their possible role
along colorectal carcinogenesis.

Bilirubin has been reported to possess important antioxidant and anticancer functions
and was considered as an efficient prognostic biomarker for overall survival in advanced
CRC [23,24]. Lower plasma bilirubin levels were found in CRC compared to healthy
controls [19]. Circulating plasma bilirubin levels and CRC risk were reported to differ by
sex, reflected by a positive association with CRC risk among men [25]. Our findings on
lower levels of plasma bilirubin in CRC compared to adenomas further emphasize the
involvement of bilirubin in colorectal carcinogenesis.

Geijsen and Brezina et al. reported higher plasma concentrations of taurine, a member
of the bile acid metabolism, in CRC patients compared to controls [19]. Other studies found
taurine increased in serum and tissue of CRC patients [18,26]. Taurine has further been
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shown to possess apoptotic effects in human CRC cells [27]. There is evidence linking
colonic microbiota composition and dietary taurine intake with an elevated CRC risk [28].
In our study, CRC patients were mostly overweight. However, detailed dietary information
is not available within CORSA. Taurine was detected with higher levels in CRC patients
compared to adenomas and the taurine and hypotaurine metabolism was one of the most
relevant pathways in our enrichment and pathway analyses.

Coffee ranges among the most consumed beverages worldwide and its consumption
has been associated with a lower risk of CRC, which might be explained by the many
phytochemicals contained in coffee [29,30]. Caffeine and several compounds of the caffeine
metabolism have been found to be significantly altered in controls compared to CRC and
colorectal adenomas [31]. Previous studies have shown the inhibitory effect of caffeine on
colon cancer cell proliferation in vitro [32]. Contrary, coffee intake was not associated with
colon cancer risk in other studies [33]. We found several metabolites involved in caffeine
metabolism (caffeine, theobromine, and theophylline) at higher levels in CRC cases than in
adenomas. Further epidemiologic studies are needed to determine the role of caffeine and
other coffee phytochemicals on CRC risk.

Hypoxanthine, a naturally occurring purine derivative involved in nucleotide metabolism,
has been detected at higher plasma levels in CRC patients and as well as in CRC tumor
tissue compared to normal plasma and tissue [19,34]. However, a study published by
Long et al. reported lower hypoxanthine serum levels in patients diagnosed with CRC or
adenomas compared to healthy controls [31]. In our study, hypoxanthine was elevated in
CRC patients compared to adenomas, suggesting a possible role in CRC development.

Interestingly, we observed higher concentrations of several metabolites from the
tryptophan pathway in CRC cases when compared with adenomas. Those include several
bacterial metabolites of tryptophan such as indole acetic acid, indole propionic acid, and
indole lactic acid, which points towards a contribution of the gut microbiota in CRC
development [35,36]. Further we also detected isatin, also known as 1H-indole-2,3-dione,
an endogenous metabolite of tryptophan belonging to the class of organic compounds
known as indolines. Isatin is an oxidation product of indole that originates from tryptophan
being associated with the gut microbial metabolism [37,38]. In our study, isatin was
significantly higher in the CRC patients than adenomas, which maybe be associated to its
cytotoxic effect. To our knowledge there are no previous metabolomics studies that have
found isatin associated with colorectal carcinogenesis.

Several lysophosphatidylcholines (LysoPCs) have been shown to be significantly
decreased in CRC cases compared to controls [19,39,40]. In our study, several lipids from
the LysoPCs, PCs, and diacylglycerol classes were detected at lower levels in plasma
from CRC patients compared to adenomas. We identified five LysoPCs to be specific
for the CRC against LR adenomas comparison group. Moreover, the linoleic acid and
glycerophospholipid metabolism ranged among the major metabolic pathways resulting
from our pathway analysis, supporting the hypothesis of a derailed lipid metabolism in
cancer [9]. Further, we detected choline at decreased levels in CRC samples, which is in line
with previous investigations showing that plasma choline tends to be positively associated
with rectal cancer risk [41]. However, it still remains unclear whether dietary intake of
choline is associated with CRC risk [42].

Polyunsaturated fatty acids including docosahexaenoic acid (DHA) have been linked
with decreased CRC risk before [43]. Evidence is accumulating that polyunsaturated fatty
acids may have preventive properties for CRC [44]. Within the presented study we have
found decreased levels of DHA in CRC patients compared to LR and HR adenoma patients.

We detected proline at higher levels in plasma from CRC patients compared to adeno-
mas, whereas levels of valine were decreased in CRC samples. A previous study reported
higher levels of proline and valine in CRC compared with adenomas [45], and decreased
levels were detected in CRC compared to compared to controls [46]. Valine has repeatedly
been reported to be decreased in CRC [16,19,46,47]. Amino acids are the essential building
blocks required for protein synthesis and have been repeatedly studied and reported to
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be up- and downregulated in CRC biospecimen. This fact reflects the excessive protein
demand for continuous cancer cell growth and proliferation and a derailed protein turnover
within the tumor microenvironment [48].

One strength of this study is that the recruitment of CORSA is in close cooperation
with the CRC screening program “Burgenland Prevention Trial of Colorectal Cancer Dis-
ease with Immunological Testing” (B-PREDICT). In course of this two-stage screening
program, all Fecal Immunochemical Test (FIT)-positive participants receive a colonoscopy.
Within B-PREDICT we have recruited participants along the colorectal carcinoma sequence
comprising CRC, HR and LR adenomas. Standard operating procedures ensure consistent
sample collection and processing within CORSA, providing a high-quality biorepository
and clinical database. The herein selected study population was balanced regarding age,
gender, and smoking status to reduce non-biological effects during data analysis.

Despite the fact that major molecular events underlie CRC progression, we did not
reveal any significant metabolic difference between histologically confirmed HR and LR
adenomas. Our data suggests that HR and LR adenomas might display similar metabolic
patterns. To our knowledge, no previous plasma metabolomics studies have reported on
significant variations to discern histologically different adenomas on the metabolome level.
Hence, changes in metabolite levels at the premalignant adenomas stage compared to CRC
should be subject of further investigations.

A limitation of this study is the lack of detailed dietary information. Diet, amongst
other factors, plays a role in some of the pathways such as the tryptophan or caffeine
metabolism. Metabolite annotation in untargeted metabolomics is still challenging and
many signals associated with CRC remain unidentified. Of note, pathway analyses are
usually not fully comprehensive and complete per se, but assist in forming new hypotheses
and estimating pathway level differences based on generated metabolomics data. Conflict-
ing results in metabolite levels reported from various studies might arise from different
study populations, sample collection and preparation, analytical platforms and statistical
approaches applied [15]. To date, no clear recommendation on standardizing metabolomics
analyses has been released. Despite the large number of metabolites detected, we must
acknowledge that a single analytical method cannot measure the entire plasma metabolome
and potential drivers of CRC may have been missed. Of note, LC-MS, as used here, was pre-
viously described as one of the leading analytical methods and well suited to study complex
human blood samples [13]. A limiting factor in metabolomics is feature identification. The
conception of untargeted metabolomics involves a comprehensive, hypothesis generating
study acquiring data for as many species as possible, annotating metabolites, and reviewing
both known and unknown metabolic changes. In contrast, targeted metabolomics focuses
on quantification of a limited number of known metabolites. The metabolites identified
in this study have previously yet inconsistently been identified as potential biomarkers
of interest in association with CRC. Independent validation using predictive models in
other cohorts and confirmation of identity by targeted metabolomics would be needed
to evaluate the detected associations and to verify the biomarker potential of the herein
described metabolites.

Our untargeted metabolomics approach reveals major differences in plasma metabolic
features in patients with CRC compared to HR and LR adenomas and might provide sub-
stantial information towards a more detailed picture of CRC metabolic pathway networks.

4. Materials and Methods
4.1. Study Population

Within the MetaboCCC consortium, a large consortium of four independent European
CRC cohorts, we analyzed untargeted metabolomics data from the Austrian CORSA.
CORSA is an ongoing multicenter study recruiting participants in cooperation with the
province-wide CRC screening program B-PREDICT using a FIT as an initial screening.
FIT-positive tested participants received a complete colonoscopy and were invited to take
part in CORSA. Additional participants were recruited at four hospitals in Vienna. CORSA
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includes men and women aged between 30 and 90, and excludes patients diagnosed with
hereditary CRC syndromes, with any previous cancer history or with inflammatory bowel
diseases, such as Crohn’s disease, ulcerative colitis or diverticulitis. EDTA plasma samples
and written informed consent were obtained from all study participants. Information on
demographic (e.g., age at diagnosis, weight, height) and lifestyle factors (including diabetes
status, alcohol consumption, and smoking status) was obtained through self-assessment
using the basic CORSA questionnaire. Clinical data were abstracted from medical records,
and adenoma samples were categorized according to their size and histopathological
finding. All CRC patients were diagnosed as histologically confirmed, sporadic CRC,
stage I-IV. Adenomatous tubular polyps > 1 cm, adenomatous tubulo-villous polyps and
adenomatous villous polyps were considered HR adenomas. LR adenomas were defined
as adenomatous tubular polyps < 1 cm or hyperplastic polyps. The presented analysis was
performed with data from patients diagnosed with CRC (n = 88), LR adenomas (n = 200),
and HR adenomas (n = 200) selected from the CORSA biobank. CRC and adenoma samples
were matched for age, sex, and smoking status. Plasma samples were obtained from
participants prior to surgery or any radio- or chemotherapy.

4.2. Biospecimen Handling, Metabolomics Analysis, and Data Pre-Processing

Blood samples were processed within 4 h following standardized protocols and stored
at −80 ◦C before shipping on dry ice to the International Agency for Research on Cancer
(IARC) in Lyon, France, for analysis. Untargeted metabolomics analyses were performed
using ultra-high performance liquid chromatography-quadrupole time-of-flight mass
spectrometry (UHPLC-qTOF-MS). Details on the sample preparation and analysis have
been previously described by Geijsen and Brezina et al. [19]. Briefly, samples derived from
the CORSA cohort were blinded, and randomly distributed into two analytical batches.
CRC, HR as well as LR adenoma samples were equally distributed across the two batches.
In this study, we define chromatographic peaks derived from specific ions as “features”,
whereas “metabolites” or “compounds” are defined as confirmed molecules consisting
of one or more features. Feature finding was performed with the MassHunter software
(Agilent Technologies, Santa Clara, CA, USA) using a recursive feature finding workflow
as described earlier [19], with the exception that features in the samples used for the
present study were aligned by Agilent Mass Profiler Pro 12.5, using retention time and
mass windows of 0.07 min and 15 ppm + 2 mDa, respectively. Features present in every
blank sample within at least one batch were excluded, unless they were more than 5-fold
greater in intensity in samples than in blanks within the same batch (based on fold-change
analysis in Mass Profiler Pro). Chromatographic peak areas were used as a measurement
of feature intensity.

4.3. Feature Identification

Features were clustered according to retention time, mass, and intensity correlation
across samples to facilitate finding those originating from the same compound. m/z values
were searched against the human metabolite database (HMDB, https://hmdb.ca/, accessed
on 21 July 2020) [49] using [M + H]+, [M − H2O + H]+, and [M + Na]+ ions, with 15 ppm
molecular weight tolerance. In addition, an in-house compound and feature database at
IARC was searched for features with matching retention time and mass. Identification was
confirmed by reanalysis of representative study samples and authentic chemical standards
when available, and comparison of the retention times and the fragmentation (MS/MS)
spectra. Supplementary File S4 is given a detailed overview of the retention times MS/MS
spectra of all identified metabolites and the corresponding authentic chemical standards.
When standards were not available, MS/MS spectra were acquired when possible and
compared against those in mzCloud (www.mzcloud.org, last access: 13 December 2020) or
Metlin (https://metlin.scripps.edu, accessed between 14 January and 4 February 2021 [50].
The level of identification was as proposed by Sumner et al. [51]. If two or more metabolic

https://hmdb.ca/
www.mzcloud.org
https://metlin.scripps.edu
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features were assigned to the same metabolite identification, we selected the ion [M + H]+

or [M]+ as the a representative feature with the highest intensity.

4.4. Metabolic Enrichment and Pathway Analysis

Enrichment and pathway analyses were performed via the web server of Metabo-
Analyst (version 5.0, www.metaboanalyst.ca/, last access: 8 February 2021)) to depict
the most relevant metabolic pathways involving the identified features of the untargeted
metabolomics dataset [52]. The summary plot of the metabolite set enrichment analysis
was implemented using hypergeometric testing to evaluate whether a particular metabolite
set was represented more than expected by chance within the provided compound list.
One-tailored p-values were provided after adjusting for multiple testing (Holm-Bonferroni
method). The pathway analysis module offers two different parameters to determine
relevant pathways within the comparison groups: the statistical p-values derived from the
quantitative enrichment analysis, and the pathway impact value calculated by the topo-
logical analysis with the relative-betweenness centrality. Here, we calculated metabolic
pathways using Fisher’s Exact Test and relative-betweenness centrality based on the KEGG
pathway library.

4.5. Statistical Analysis

Features with >50% missing values in all study groups were excluded from further
analysis. Separate multivariable logistic regression models were estimated to test the
association between the intensity of each feature and disease state of three case-control
comparison groups (CRC against HR and LR, CRC vs. HR, and CRC vs. LR adenomas)
adjusted for age at diagnosis, sex, BMI, and smoking status. Disease state was treated
as dependent variable. Feature intensity was entered as main explanatory variable into
the model after log-transformation and adjustment for batch. To evaluate any potential
influence of advanced stage CRC on the main analysis, a sensitivity analysis was per-
formed. BMI is defined as weight in kilograms divided per the square of height in meters
(kg/m2). Smoking status was categorized as current, former, and never smoker. Stan-
dardized ORs (OR.std) and corresponding 95% CIs were derived for estimated coefficients
of log-intensities. OR.std represents the change in CRC occurrence when there is a one
standard deviation (SD) change in log metabolite intensity, allowing comparisons of ef-
fect sizes between different features. SDs for standardization were derived from control
groups. Features showing FDR-adjusted p-values < 0.05 were carried forward for iden-
tification. Statistical analyses were performed using R (version 4.0.2, R Foundation for
Statistical Computing, Vienna, Austria, URL https://www.R-project.org/, accessed on 14
December 2020).

5. Conclusions

Data obtained from this study was generated through an untargeted metabolomics
approach using plasma samples from the CORSA biobank comprising CRC, HR and LR
adenomas. The observed metabolic variations might be reflected by major differences in
plasma metabolomes between patients diagnosed with CRC and precancerous adenomas.
In general, the herein identified metabolites could be assigned to metabolic pathways
essentially involved in sustaining and driving cellular energy. The nicotinate and nicoti-
namide pathway plays vital roles in energy metabolism of eukaryotic cells by serving as a
precursor of NAD+ synthesis. Lipid metabolism involves the carnitine, linoleic acid, and
glycerophospholipid pathways. Peptide and protein synthesis is driven by amino acids like
proline and valine. Bile acids such as taurine as well as bacterial tryptophan metabolites
point towards a role of the gut microbiome in CRC. Our study provides potential towards
studying the metabolic puzzle of CRC and offers yet unidentified metabolites for future
investigations.

www.metaboanalyst.ca/
https://www.R-project.org/
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